

LNAPL Mobility and Well Thickness Variations

Randall Charbeneau, P.E. Professor of Civil Engineering, University of Texas

&

Mark Adamski, P.G. Technical Specialist and Environmental Business Manager, BP America

Presentation Outline

- LNAPL mobility
 - NAPL Hydraulic Conductivity
 - NAPL Relative Permeability
 - LNAPL Layer Transmissibility
- Potential for Lateral Migration
- Variable LNAPL Layer Thickness in Wells
 - Unconfined LNAPL
 - Confined LNAPL

LNAPL Mobility

Two Issues

- The soil "hydraulic conductivity" differs for different fluids
- If multiple fluids are present in the pore space, each will have its "relative permeability" reduced

Scaling Hydraulic Conductivity

$$K_{ns} = K_{ws} \frac{\rho_r}{\mu_r}$$

Relative Permeability

Darcy's Law:

$$q_n = K_{ns} k_{rn}(S_w, S_n) I_n$$

 q_n = Darcy velocity (volume flux)

I_n = LNAPL hydraulic gradient

LNAPL Relative Permeability, k_{rn}

- Varies from 0 to 1
- Depends on both water and LNAPL saturation
- Difficult to measure; most often calculated from soil characteristic curve

Permeability Models

Soil from Mid-west Refinery located near Missouri river

1.0 NAPL Relative Permeability 0.8 $S_{w} = 0.4$ 0.6 0.4 $S_{w} = 0.6$ 0.2 0.0 0.2 0.4 0.6 0.8 0 **NAPL Saturation**

Relative permeability calculated using vanGenuchten-Burdine model equations

LNAPL-Layer Mobility, T_n

- Primary factor controlling LNAPL lateral mobility is the layer transmissibility (transmissivity)
- Used in vertically averaged LNAPL models and other simplified models for LNAPL migration
- Field measurement using borehole (rateof-rise) methods

Comparison of Models

Burdine

Mualem

LNAPL Transmissibility, $T_n(b_n)$

Field Assessment of Transmissibility

Movement of LNAPL into and out of pores – displacement entry pressure

Entry Pressure and LNAPL Migration

- Water is the wetting fluid, LNAPL intermediate, and air is nonwetting
- Capillary pressure is necessary to cause displacement of wetting fluid from pore space by nonwetting fluid
- For LNAPL to migrate laterally, it must displace water from the pore space near the water table (within the capillary fringe)
- A minimum, critical LNAPL head, h_d, must be present near the edge of the plume in order to have spreading

Displacement Pressure Head, h_d

h_d also called:

- Entry pressure head
- Bubbling pressure head
- Capillary rise

Representative values from Lohman (1972):

<u>Material</u>	Capillary Rise (cm)
Coarse sand	10
Fine sand	40
Silt	100

Critical LNAPL Well Thickness (for Spreading)

Approximate relationship (API, 1999)

$$b_{nc} = \left(\frac{\sigma_{nw}}{1 - \rho_r} - \frac{\sigma_{an}}{\rho_r}\right) \frac{h_d}{\sigma_{aw}}$$

 σ_{nw} - LNAPL-water interfacial tension

 σ_{an} - air-LNAPL surface tension

 σ_{aw} - air-water surface tension

 ρ_r - LNAPL specific gravity (density ratio)

Example Calculation

Data:
$$\sigma_{aw} = 65 \text{ dyne/cm}; \ \sigma_{an} = 25 \text{ dyne/cm};$$

$$\sigma_{nw}$$
 = 20 dyne/cm; ρ_r = 0.75; h_d = 40 cm

$$b_{nc} = \left(\frac{20}{1 - 0.75} - \frac{25}{0.75}\right) \frac{40}{65} = 29 \, cm$$

You could have approximately 30 cm of LNAPL in a monitoring well and the LNAPL plume would not be able to migrate laterally into uncontaminated locations

LNAPL Thickness in Wells

- In simple cases, correlates directly with LNAPL formation thickness
- In many cases, poor indicator of LNAPL conditions in formation

Monitoring Well LNAPL Thickness in a Sandstone (Unconfined Conditions)

Fig. 14. Fluid level hydrograph, monitoring well MW-8.

Huntley, Hawk and Corley (1994)

Usual Relationship Between Water Table Elevation and LNAPL Layer Thickness in a Monitoring Well

LNAPL Residual is Greater Below the Water Table than in the Vadose Zone (as water table increases LNAPL thickness decreases)

LNAPL Thickness versus Potentiometric Surface Elevation (site with water table near sand / clay interface)

Why LNAPL Thickness Increases with Increase in Water Level? Bottom Filling of Well

3rd Example with Monitoring Wells Suggesting LNAPL Trapped Beneath FGZ – Bottom Filling of Monitoring Wells

Evidence for confined LNAPL

AMR/606-D Hydrograph

Key Points

- LNAPL mobility depends on LNAPL saturation, layer thickness, fluid properties, and LNAPL gradient
- LNAPL transmissibility is a good measure of potential mobility
- For oil to enter water saturated pore the oil pressure must exceed the displacement (threshold entry) pressure
- Equilibrium LNAPL thickness in well is critical for understanding the LNAPL condition at a site.
- Variations in LNAPL thickness with water table fluctuation can help explain state of LNAPL (confined, unconfined, or perched)
- We (Mark) are finding that confined LNAPL is pretty common (30 – 50% of sites)

Thank You